

Synapse Bootcamp - Module 17

Network Infrastructure Analysis - Answer Key

Network Infrastructure Analysis - Answer Key	1
Answer Key	2
Analyzing and Identifying Network Infrastructure	2
Exercise 1 Answer	2
Part 1 - Enriching Data with the NetTools Power-Up - Whois data	2
Part 2 - Enriching Data with the NetTools Power-Up - DNS Data	5
Part 3 - Enriching Data with the NetTools Power-Up - Network Whois Data	7
Part 4 - Enriching Data with the AlienVault Power-Up - Passive DNS	10
Part 5 - Comparing Domain Whois and DNS Data	11
Part 6 - Checking Network Infrastructure	13
Look for Similar Certificates	14
Exercise 2 Answer	14

Answer Key

Analyzing and Identifying Network Infrastructure

Exercise 1 Answer

Objective:

• Use Power-Ups to obtain network-based data and characterize network infrastructure.

Part 1 - Enriching Data with the NetTools Power-Up - Whois data

Question 1: Based on this current whois record, when was the FQDN registered?

• The FQDN was registered on **June 15, 2020** (2020/06/15):

Question 2: Who is the **registrant** for the FQDN?

• The registrant is **digital crimes unit**:

Question 3: Based on the whois data, what DNS **name servers** are used by the FQDN?

• The FQDN uses the DNS name servers **ns104a.microsoftinternetsafety.net** and **ns104b.microsoftinternetsafety.net**:

Question 4: What does the FQDN cleanskycloud.com look like now?

• The color of the node changed in the **Results Panel**, based on our tag color rules:

The new tag is also visible in the **Details Panel**:

Tip: the domain whois information shows **when** Microsoft registered the domain (the :created property) and when the current registration expires (the :expires property).

We could **optionally** use this information to add **timestamps** to show "when" Microsoft sinkholed the domain:

Part 2 - Enriching Data with the NetTools Power-Up - DNS Data

Question 5: What type(s) of DNS records were created (e.g., A, AAAA, MX, etc.?)

• The NetTools Power-Up created an **inet:dns:a** node:

The **default** behavior for the **nettools.dns** Storm command (and the associated Node Action) is to perform a **DNS A** lookup for FQDNs.

Question 6: What IPv4 address does the FQDN resolve to?

The FQDN resolves to IPv4 40.83.198.93 (as of August 2025):

Question 7: What **new** type(s) of DNS records were created (e.g., AAAA, MX, etc.?)

• The NetTools custom Node Action created additional MX, NS, and SOA records:

Part 3 - Enriching Data with the NetTools Power-Up - Network Whois Data

Question 8: What is the network name (:name property) associated with this netblock?

• The netblock name is **MSFT**:

Question 9: What are the starting and ending IPv4 addresses associated with this netblock?

• The starting IPv4 is **40.74.0.0**. The ending IPv4 **40.125.127.255** (as of August 2025):

The **range** of IPv4 addresses for this network is shown in the **:net4** property. The first IPv4 (**:net4:min**) and last IPv4 (**:net4:max**) are also stored separately so you can pivot from them.

Question 10: When (on what date) was this network range registered to Microsoft?

• The :created date for the network whois record shows that the network range was registered to Microsoft on February 23, 2015 (2015/02/23):

Part 4 - Enriching Data with the AlienVault Power-Up - Passive DNS

Question 11: What is the earliest (.seen[min]) date that an FQDN resolved to the IPv4?

• If we sort by the .seen[min] column, the earliest resolution was December 5, 2021 (2021/12/05 04:00:19):

Note: your answer may vary based on current data returned by the AlienVault Power-Up.

Question 12: What is the **most recent** (.seen[max]) date that an FQDN resolved to the IPv4?

• If we sort by the .seen[max] column, the most recent was today:

The **.seen[max]** column should reflect the time of the live DNS A query you ran for **cleanskycloud.com**.

Part 5 - Comparing Domain Whois and DNS Data

Question 13: Who is the registrant for the FQDN?

• The registrant is digital crimes unit:

Question 14: What DNS name servers does the FQDN use, according to the whois data?

• The FQDN uses the names servers **ns104a.microsoftinternetsafety.net** and **ns104b.microsoftinternetsafety.net**:

Question 15: What DNS name servers does the FQDN use, according to the DNS lookup data?

• The **live** DNS NS lookup returned **two** NS records (**inet:dns:ns**):

The DNS records show the servers:

- ns001.microsoftinternetsafety.net
- ns002.microsoftinternetsafety.net

Although the hostnames vary between the WHOIS name servers and the NS records, all four name servers use the FQDN **microsoftinternetsafety.net**.

Part 6 - Checking Network Infrastructure

Question 16: What port was serving the certificate?

• The certificate was hosted on port **443**:

Tip: An **inet:tls:servercert** node links a server (**inet:server**) with the metadata (**crypto:x509:cert**) for the certificate that was observed there.

Question 17: Who was the certificate issued to (i.e., what is the **:subject** of the certificate)?

• The :subject field of the certificate is:

C=ZZ, L=DavhlVuwmxy, O=Qjvoobim, CN=Koqnu

Question 18: Is the certificate self-signed (vs. issued and signed by a Certificate Authority)?

Yes, the certificate is self-signed (the :selfsigned property is true):

Look for Similar Certificates

Exercise 2 Answer

Objective:

• Look for similar certificates and associated servers based on certificate metadata properties.

Question 1: How many **inet:tls:servercert** nodes are in the results?

There is one inet:tls:servercert node in our results:

This is the node for our original Microsoft sinkhole IPv4.

This **exact** certificate has only been seen on one server (IP address / port).

Question 2: How many certificates in Synapse have the same :subject value?

• Only **one** certificate in Synapse has this **exact** subject:

Question 3: How many certificates in Synapse have a **:subject** that includes this string?

• There are **eleven** certificates with this string in Synapse:

Tip: This answer is based on data **already** in Synapse. You could use additional Power-Ups (such as Shodan or Censys) to find additional information.

For example, you could query the certificate subject CN to see if a third-party data source had seen any additional certificates with the unusual CN name "Koqnu".

Question 4: What Autonomous System (AS) number(s) and network(s) are the IPv4 addresses associated with?

• The IPv4s are associated with **AS 8075** (microsoft-corp-msn-as-block, us):

Question 5: Does the name **Koqnu** appear to be unique to Microsoft infrastructure?

• Yes. Based on the data we have, the name Koqnu seems to be unique to Microsoft.

Some additional questions we might ask and try to answer:

- Check any third-party data sources that can provide certificate data to see if there are similar certificates that Synapse does **not** know about. Finding additional certificates may help prove (or disprove!) our theory that these certificates are unique to Microsoft.
- Research the additional IPv4 addresses to see if they are also sinkholes, or simply other Microsoft servers.
- Look for other similarities on the servers (e.g., JARM fingerprints, software or services, etc.).